Butadiene Iron-tricarbonyl Liquid Crystal Complexes

L. Ziminski and J. Malthête

Ecole Normale Supérieure de Lyon, UMR 117 CNRS-ENS Lyon, 46, allée d'Italie, 69364 Lyon Cedex 07, France

The first family of butadiene iron-tricarbonyl liquid crystal complexes is described.

Ferroelectric liquid crystals such as chiral smectic C phases¹ are of interest because of their possible application in switching bistable electro-optic devices.² There has been a lot of work done in this area over the past ten years and it has been noted that a large spontaneous polarization is generally

necessary for short switching times. It has also been found that a conformationally rigid stereo-polar unit is important to promote a high polarization density and, in turn, to obtain high speed optical switching liquid crystal materials.³ Nevertheless, to date most of the chiral groups have been introduced

$$X = Me, Y = -CO_2H$$

$$b; X = Me, Y = -CO_2 - C$$

$$c; X = C - Y = -CO_2Me$$

$$d; X = C - Y = -CO_2 - C$$

$$h$$

$$n-(alkyl or alkoxy)$$

R N=CH
$$R'$$
 CO_2
 R'
 CO_2
 CO_2
 R'
 CO_2
 R'
 CO_2
 CO_2
 R'
 CO_2
 CO_2
 CO_2
 CO_2
 CO_2
 CO_3
 CO_4
 C

into the flexible paraffinic chains. Some rare examples of mesogens with a chiral rigid part have been described but the results concerning the polarization are not still convincing.⁴

We anticipated that the butadiene iron-tricarbonyl group 1 would be an excellent candidate for building up ferroelectric liquid crystal materials because (i) it is chiral when X and Y are different and the enantiomers are easily available,⁵ (ii) it presents a lateral dipole moment $\pi \to \text{Fe}(\text{CO})_3$ (about 2D),⁶ (iii) it is rigid and (iv) its two functions X and Y allow it to be inserted into a rod-like mesogenic structure.

We herein describe the mesomorphic behaviour of the racemic butadiene iron-tricarbonyl complexes 2 and 3. Complexes 2 were prepared from racemic 1a via the aldehyde 1b which was condensed with the appropriate p-aminophenyl p'-n-(alkyl or alkoxy)benzoate in absolute ethanol. Complexes 3 were obtained from racemic 1c by combination of aldehyde 1d with the appropriate p-n-(alkyl or alkoxy)aniline in absolute ethanol. Complexes 2 and 3 were purified by recrystallization from absolute ethanol (60–80% yield from 1b and 1d, respectively; yellow solids). The 1d NMR spectra and microanalyses are in agreement with the structures of the new complexes. The transition temperatures and enthalpies are given in Table 1.

Table 1 Transition temperatures for complexes 2 and 3

Complex	Transition ^a	T/°C	$\Delta H/\text{kcal mol}^{-1b}$
2a	C-N	125.5	5.9
	N-I	249.5^{c}	d
2b	C-N	125.5	6.3
	N-I	220.5^{c}	d
2c	C-N	114.5	5.9
	N-I	212.5^{c}	d
3a	C-I	87.5	8.5
	$I-N^e$	78	0.2
3b	C-N	109.5	9.9
	N-I	110	0.2
3c	C-I	122	d
	$I-N^e$	99	0.15
3d	C-N	91.5	d
	$N-S_A^e$	89.5	d
	N-I	96.5	0.25
3e	C-S _A	78.5	11.4
	S_A-N	91.5	0.2
	N-I	96.5	0.3
3f	C-S _A	76	12.2
	S _A -I	94	1.0
3g	C-S _A	85.5	13.7
	$S_A - \hat{I}$	97.5	1.3

^a Observed on a Leitz polarizing microscope equipped with a variable temperature stage (Mettler FP80). ^b Measured on a Perkin-Elmer DSC-2 (1 kcal = 4.184 kJ). ^c Decomposition. ^d Unmeasurable (crystalline polymorphism, decomposition or shoulder). ^e Monotropic transition.

Series 2 only exhibits nematic properties, while in series 3 a smectic A phase can be observed besides a nematic phase (Table 1). This second series is devoid of smectic C properties, in spite of the presence in each complex 3 of two chains of equal length. However, the smectic A phase of optically active 3 can probably be used in electro-optic devices by application of the electroclinic effect. As usual, the nematic stability decreases and smectic A stability increases as the paraffinic chains lengthen (only a nematic phase with C_6 chains 3b, nematic and smectic A phases with C_{10} chains 3e and only a smectic A phase with C_{12} chains 3g). Anyway, enantiomers 2 and 3 can act as dopants by inducing ferroelectricity when dissolved in a non-chiral smectic A or C phase.

We thank Dr. R. Grée for samples of compounds 1a and 1c and Région Rhône-Alpes for financial support.

Received, 23rd July 1990; Com. 0/03325A

References

- 1 R. B. Meyer, L. Liébert, L. Strzelecki and P. Keller, *J. Phys. Lett.*, 1975, **36**, L-69.
- 2 N. A. Clark and S. T. Lagerwall, Appl. Phys. Lett., 1980, 36, 899.
- 3 S. T. Lagerwall, B. Otterholm and K. Skarp, *Mol. Cryst. Liq. Cryst.*, 1987, **152**, 503; K. Skarp and M. A. Handschy, *Mol. Cryst. Liq. Cryst.*, 1988, **165**, 439.
- 4 G. Solladié and R. G. Zimmermann, Angew. Chem., Int. Ed. Engl., 1984, 23, 348; J. Pavel, M. Glogarova, D. Demus, A. Mädicke and G. Pelzl, Cryst. Res. Technol., 1983, 18, 915.
- 5 R. Grée, Synthesis, 1989, 341 and references cited therein.
- 6 H. D. Murdoch and E. Weiss, *Helv. Chim. Acta*, 1962, **45**, 1156; 1963, **46**, 1588 (1D = 3.33×10^{-30} C m).
- 7 J. Malthête, J. Billard, J. Canceill, J. Gabard and J. Jacques, J. Phys., 1976, 37-C3, 1; D. M. Walba, S. C. Slater, W. N. Thurmes, N. A. Clark, M. A. Handschy and F. Supon, J. Am. Chem. Soc.., 1986, 108, 5210.
- 8 G. Andersson, I. Dahl, P. Keller, W. Kuczynski, S. T. Lagerwall, K. Skarp and B. Stebler, Appl. Phys. Lett., 1987, 51, 640.